unit of analysis - 看分母
1. sanity check for invariant metrics
unit of analysis - 看分母
1. sanity check for invariant metrics
问题:uber不同算法 - 选event还是user based?
metric sensitivity and robustness
- average is sensitive to outliers
- easy to move? (median is hard to change)
- standard deviation vary a lot?
Normal Distribution Steps - confidence interval
1. calculate p difference
2. calculate p pool
3. calculate pool standard deviation (if given empirical sd, use new sd/se)
4. calculate margin of error
5. calculate confidence interval
6. check statistical (default is 0)/practical (if given dmin) significance
问题:为什么smoking那道题normal distribution的顶是20%?不是10000人里有8000人抽烟吗
analytical variability - 通过ab测试的实验数据得出,容易underestimate (不复杂的normal distribution用这个)
如何计算:1. 算difference 2. p pool 3. SE_pool 4. margin of error 5. confidence interval
empirical variability - 通过以前的实验或者理论得出,适用于non-parametric metric
如何计算:1. 求difference 2. 用diff算stdv
问题:课最后的diff order怎么得出来的
segmentation - 看treatment group和control group有没有区别可以分channel看 (e.g.找工作不同的渠道)
event based: - 同一个人每次看会变 better when the change is not visible to avoid disruption of experience, short term
cookie (user) based - 看过这个feature的永远保持在一组: long-term, 人对于这个feature的影响
invariant metric
AARRR
acquisition
- customer acquisition cost CAC/CPA
- daily new users DNU
- daily one session users DOSU (一次开关算一个session)
activation
- dailyt/weekly/monthly active users
- daily average online time DAOT/AT
retention and churn 保留和流失
- day 1/7/30 churn/retention rate
revenue
- active payment account APA
- average revenue per user ARPU (要大于cost per user才是好的)
- life time value LTV (只要一使用产品这个用户会贡献多少钱)
referral
Daily: 是否存在异常(节日,推广,版本更新,事故),渠道表现
weekly: 关注retention and churn
confidence intervals:
if want to use normal distribution, has to check N*p > 5 and N(1-p) > 5
margin of error=z*SE=z*sqrt(p(1-p)/n), z=1.96 if alpha=5%
confidence interval: [p-MOE, p+MOE]
Hypothesis test
alpha=P(rejected null | null is true) 错判
beta=P(fail to reject null | null is false) 漏网之鱼
power=1-beta
发现一个correlation之后可以反问:
1. how to define x and y
2. why is y variable important
3. scope of this obersation
什么情况不适合做ab test:
novelty effect: 视觉上的变化,用户可见的新功能性增加,比较难展开精准的ab test,如logo
不是所有产品都适合做ab test,比如卖车
stats考点: sample size, p value, std, minimum detectable effect, type 1/2 error, confidence interval, z test/score, t test/score, significant level, power rate
segment - 通常指把用户分成几类
click through rate (CTR) vs click through probability (distinct people)